• 排行榜的五种方案!

排行榜的五种方案!

2025-05-07 10:00:05 栏目:宝塔面板 67 阅读

引言

在工作的这些年中,我见证过太多团队在实现排行榜功能时踩过的坑。

今天我想和大家分享 6 种不同的排行榜实现方案,从简单到复杂,从单机到分布式,希望能帮助大家在实际工作中做出更合适的选择。

有些小伙伴在工作中可能会觉得:不就是个排行榜吗?搞个数据库排序不就完了?

但实际情况远比这复杂得多。

当数据量达到百万级、千万级时,简单的数据库查询可能就会成为系统的瓶颈。

接下来,我将为大家详细剖析 6 种不同的实现方案,希望对你会有所帮助。

方案一:数据库直接排序

适用场景:数据量小(万级以下),实时性要求不高

这是最简单直接的方案,几乎每个开发者最先想到的方法。

示例代码如下:

public List getRankingList() {
    String sql = "SELECT user_id, score FROM user_scores ORDER BY score DESC LIMIT 100";
    return jdbcTemplate.query(sql, new UserScoreRowMapper());
}

优点

  • 实现简单
  • 代码维护成本低
  • 适合数据量小的场景

缺点

  • 数据量大时性能急剧下降
  • 每次查询都需要全表扫描
  • 高并发下数据库压力大

架构图如下

图片

方案二:缓存+定时任务

适用场景:数据量中等(十万级),可以接受分钟级延迟

这个方案在方案一的基础上引入了缓存机制。

示例代码如下:

@Scheduled(fixedRate = 60000) // 每分钟执行一次
public void updateRankingCache() {
    List rankings = userScoreDao.getTop1000Scores();
    redisTemplate.opsForValue().set("ranking_list", rankings);
}

public List getRankingList() {
    return (List) redisTemplate.opsForValue().get("ranking_list");
}

优点

  • 减轻数据库压力
  • 查询速度快(O(1))
  • 实现相对简单

缺点

  • 数据有延迟(取决于定时任务频率)
  • 内存占用较高
  • 排行榜更新不及时

架构图如下

图片

方案三:Redis有序集合

适用场景:数据量大(百万级),需要实时更新

Redis的有序集合(Sorted Set)是实现排行榜的利器。

示例代码如下:

public void addUserScore(String userId, double score) {
    redisTemplate.opsForZSet().add("ranking", userId, score);
}

public List getTopUsers(int topN) {
    return redisTemplate.opsForZSet().reverseRange("ranking", 0, topN - 1);
}

public Long getUserRank(String userId) {
    return redisTemplate.opsForZSet().reverseRank("ranking", userId) + 1;
}

优点

  • 高性能(O(log(N))时间复杂度)
  • 支持实时更新
  • 天然支持分页
  • 可以获取用户排名

缺点

  • 单机Redis内存有限
  • 需要考虑Redis持久化
  • 分布式环境下需要额外处理

架构图如下

图片

方案四:分片+Redis集群

适用场景:超大规模数据(千万级以上),高并发场景

当单机Redis无法满足需求时,可以采用分片方案。

示例代码如下:

// 
public void addUserScore(String userId, double score) {
    RScoredSortedSet set = redisson.getScoredSortedSet("ranking:" + getShard(userId));
    set.add(score, userId);
}

private String getShard(String userId) {
    // 简单哈希分片
    int shard = Math.abs(userId.hashCode()) % 16;
    return "shard_" + shard;
}

在这里我们以Redisson客户端为例。

优点

  • 水平扩展能力强
  • 可以支持超大规模数据
  • 高并发下性能稳定

缺点

  • 架构复杂度高
  • 跨分片查询困难
  • 需要维护分片策略

架构图如下

图片

方案五:预计算+分层缓存

适用场景:排行榜更新不频繁,但访问量极大

这种方案结合了预计算和多级缓存。

示例代码如下:

@Scheduled(cron = "0 0 * * * ?") // 每小时计算一次
public void precomputeRanking() {
    Map rankings = calculateRankings();
    redisTemplate.opsForHash().putAll("ranking:hourly", rankings);
    
    // 同步到本地缓存
    localCache.putAll(rankings);
}

public Integer getUserRank(String userId) {
    // 1. 先查本地缓存
    Integer rank = localCache.get(userId);
    if (rank != null) return rank;
    
    // 2. 再查Redis
    rank = (Integer) redisTemplate.opsForHash().get("ranking:hourly", userId);
    if (rank != null) {
        localCache.put(userId, rank); // 回填本地缓存
        return rank;
    }
    
    // 3. 最后查DB
    return userScoreDao.getUserRank(userId);
}

优点

  • 访问性能极高(本地缓存O(1))
  • 减轻Redis压力
  • 适合读多写少场景

缺点

  • 数据实时性差
  • 预计算资源消耗大
  • 实现复杂度高

架构图如下

图片

方案六:实时计算+流处理

适用场景:需要实时更新且数据量极大的社交平台

这种方案采用流处理技术实现实时排行榜。

使用Apache Flink示例如下:

DataStream actions = env.addSource(new UserActionSource());

DataStream> scores = actions
    .keyBy(UserAction::getUserId)
    .process(new ProcessFunction>() {
        private MapState userScores;
        
        public void open(Configuration parameters) {
            MapStateDescriptor descriptor = 
                new MapStateDescriptor<>("userScores", String.class, Double.class);
            userScores = getRuntimeContext().getMapState(descriptor);
        }
        
        public void processElement(UserAction action, Context ctx, Collector> out) {
            double newScore = userScores.getOrDefault(action.getUserId(), 0.0) + calculateScore(action);
            userScores.put(action.getUserId(), newScore);
            out.collect(new Tuple2<>(action.getUserId(), newScore));
        }
    });

scores.keyBy(0)
      .process(new RankProcessFunction())
      .addSink(new RankingSink());

优点

  • 真正的实时更新
  • 可处理超高并发
  • 支持复杂计算逻辑

缺点

  • 架构复杂度高
  • 运维成本高
  • 需要专业团队维护

架构图如下

图片

方案对比与选择

方案

数据量

实时性

复杂度

适用场景

数据库排序

个人项目、小规模应用

缓存+定时任务

中小型应用,可接受延迟

Redis有序集合

大型应用,需要实时更新

分片+Redis集群

超大

超大型应用,超高并发

预计算+分层缓存

中高

读多写少,访问量极大

实时计算+流处理

超大

实时

极高

社交平台,需要实时排名

总结

在选择排行榜实现方案时,我们需要综合考虑以下几个因素:

  1. 数据规模:数据量大小直接决定了我们选择哪种方案
  2. 实时性要求:是否需要秒级更新,还是分钟级甚至小时级都可以接受
  3. 并发量:系统的预期访问量是多少
  4. 开发资源:团队是否有足够的技术能力维护复杂方案
  5. 业务需求:排行榜的计算逻辑是否复杂

对于大多数中小型应用,方案二(缓存+定时任务)或方案三(Redis有序集合)已经足够。如

果业务增长迅速,可以逐步演进到方案四(分片+Redis集群)。

而对于社交平台等需要实时更新的场景,则需要考虑方案五(预计算+分层缓存)或方案六(实时计算+流处理),但要做好技术储备和架构设计。

最后,无论选择哪种方案,都要做好监控和性能测试。排行榜作为高频访问的功能,其性能直接影响用户体验。

建议在实际环境中进行压测,根据测试结果调整方案。

希望这六种方案的详细解析能帮助大家在工作中做出更合适的选择。


记住,没有最好的方案,只有最适合的方案。

本文地址:https://www.yitenyun.com/187.html

搜索文章

Tags

数据库 API FastAPI Calcite 电商系统 MySQL Web 应用 异步数据库 数据同步 ACK 双主架构 循环复制 TIME_WAIT 运维 负载均衡 Deepseek 宝塔面板 Linux宝塔 Docker JumpServer JumpServer安装 堡垒机安装 Linux安装JumpServer esxi esxi6 root密码不对 无法登录 web无法登录 生命周期 SSL 堡垒机 跳板机 HTTPS 序列 核心机制 HexHub Windows Windows server net3.5 .NET 安装出错 HTTPS加密 宝塔面板打不开 宝塔面板无法访问 查看硬件 Linux查看硬件 Linux查看CPU Linux查看内存 Oracle 处理机制 InnoDB 数据库锁 连接控制 机制 无法访问宝塔面板 ES 协同 监控 Windows宝塔 Mysql重置密码 Serverless 无服务器 语言 技术 开源 PostgreSQL 存储引擎 分页查询 索引 group by Spring Redis 异步化 服务器 管理口 缓存方案 缓存架构 缓存穿透 高可用 SQL 动态查询 响应模型 自定义序列化 SVM Embedding 日志文件 MIXED 3 GreatSQL 连接数 数据 主库 云原生 服务器性能 SQLark PG DBA ​Redis 机器学习 推荐模型 Netstat Linux 服务器 端口 scp Linux的scp怎么用 scp上传 scp下载 scp命令 AI 助手 向量数据库 大模型 R edis 线程 工具 共享锁 Undo Log 查询 Linux 安全 SQLite-Web SQLite 数据库管理工具 openHalo OB 单机版 存储 Rsync Recursive 架构 电商 系统 Postgres OTel Iceberg R2DBC • 索引 • 数据库 RocketMQ 长轮询 配置 聚簇 非聚簇 优化 万能公式 修改DNS Centos7如何修改DNS 数据分类 加密 redo log 重做日志 磁盘架构 流量 同城 双活 sftp 服务器 参数 防火墙 黑客 Ftp Hash 字段 场景 信息化 智能运维 MySQL 9.3 RDB AOF MVCC 人工智能 推荐系统 高效统计 今天这篇文章就跟大家 mini-redis INCR指令 业务 数据备份 窗口 函数 缓存 网络架构 网络配置 INSERT COMPACT 向量库 Milvus Redisson 锁芯 线上 库存 预扣 Doris SeaTunnel 事务 Java 开发 prometheus Alert 不宕机 Python PostGIS B+Tree ID 字段 崖山 新版本 IT运维 核心架构 订阅机制 引擎 性能 Web 传统数据库 向量化 MongoDB 数据结构 数据脱敏 加密算法 数据类型 分布式 集中式 虚拟服务器 虚拟机 内存 ZODB 模型 filelock OAuth2 Token JOIN 读写 Canal 容器 容器化 DBMS 管理系统 QPS 高并发 网络故障 Redis 8.0 微软 SQL Server AI功能 自动重启 Pottery 锁机制 Testcloud 云端自动化 发件箱模式 聚簇索引 非聚簇索引 SpringAI Entity 排行榜 排序 分库 分表 部署 分页方案 排版 工具链 SSH 速度 服务器中毒 事务隔离 启动故障 1 数据页 悲观锁 乐观锁 StarRocks 数据仓库 Caffeine CP Web 接口 LRU 池化技术 连接池 MCP 开放协议 sqlmock 频繁 Codis 原子性 数据集成工具 单点故障 Go 数据库迁移 大表 业务场景 分页 Redka 优化器 意向锁 记录锁 AIOPS 网络 分布式架构 分布式锁​ Order EasyExcel MySQL8 IT 仪表盘 dbt 数据转换工具 日志 对象 单线程 字典 InfluxDB RAG HelixDB 行业 趋势 双引擎 事务同步 Ansible Crash 代码 国产数据库 LLM UUIDv7 主键 订单 线程安全 List 类型 Pump UUID ID 主从复制 代理 Next-Key 编程 Valkey Valkey8.0 关系数据库 播客 解锁 调优 ReadView 产业链 兼容性 语句 恢复数据 失效 MGR 分布式集群 数据字典 算法 国产 用户 查询规划 快照读 当前读 视图 RR 互联网 GitHub Git 矢量存储 数据库类型 AI代理 千万级 Weaviate 慢SQL优化 count(*) count(主键) 行数 分布式锁 Zookeeper 神经系统 表空间 并发控制 恢复机制 拦截器 动态代理 CAS 多线程 技巧 闪回