• P7领导建议:可以用UUIDv7作为数据库主键

P7领导建议:可以用UUIDv7作为数据库主键

2025-06-04 02:37:05 栏目:宝塔面板 94 阅读

前言

大家好,我是田螺

我们提到分布式主键ID的时候,可能都会想到UUID,比如在设计数据库主键的时候。但是可能最终都不会考虑它。但是呢,最近领导却建议说,可以考虑它作为数据库主键了,因为UUIDv7的出现~~

1. 传统 UUID 作为主键的缺点

传统 UUID(尤其是 v4)的 完全随机性 是其作为数据库主键的“原罪”:

无序性 (最主要问题):

  • 数据库索引(尤其是 B+Tree)依赖主键顺序插入新记录效率最高。
  • UUID 随机生成,插入位置不确定,导致索引树频繁分裂和重组,大幅降低写入性能。
  • 破坏聚簇索引(如 InnoDB)的物理存储顺序,增加磁盘 I/O。
  • 范围查询和排序效率低下,性能低下。

存储空间大

  • 占用存储空间是自增整数(如 64位 BigInt)的 2倍。
  • 导致索引更大,占用更多内存/磁盘,缓存效率降低,查询变慢

2. UUIDv7 的核心突破:时间有序性架构设计

UUIDv7 的革新性在于将 时间戳嵌入最高有效位(Most Significant Bits),实现了全局单调递增。其 128 位结构如下:

0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
┌─────────────────────┬─────┬─────┬─────────────────────────────┐
│   Unix毫秒时间戳    │ Ver │Var  │          随机位            │
│      (48位)         │(4) │(2) │          (74位)            │
└─────────────────────┴─────┴─────┴─────────────────────────────┘

设计关键点解析

  • 高精度时间前缀(48位):精确到毫秒的 Unix 时间戳,确保 ID 严格按时间递增(需 NTP 时钟同步)。
  • 尾部随机位(74位):保证分布式唯一性,避免 v1 的 MAC 地址泄露风险。

有序性如何解决性能问题?

  • B+树索引优化

新生成的 UUIDv7 总是大于之前的值,因此被追加到索引尾部,避免中间节点分裂。

  • 缓冲池友好顺序写入使新记录集中在少数数据页。当页写满时,数据库只需分配新页追加,减少旧页淘汰与磁盘I/O。
  • 范围查询加速时间有序性使 WHERE id > '2025-06-01' 可转化为 时间戳范围过滤,大幅降低扫描范围

3. UUIDv7 和其他版本的横向对比

4.项目实战:如何使用 UUIDv7?

  • 生成 UUIDv7
import com.github.f4b6a3.uuid.UuidCreator;

public class UuidUtils {
    public static UUID generateUuidV7() {
        return UuidCreator.getTimeOrdered(); // 生成 UUIDv7
    }
    
     // 转为数据库存储格式
    public static byte[] toBytes(UUID uuid) {
        ByteBuffer bb = ByteBuffer.wrap(new byte[16]);
        bb.putLong(uuid.getMostSignificantBits());
        bb.putLong(uuid.getLeastSignificantBits());
        return bb.array();
    }
    
    // 从数据库读取转换
    public static UUID fromBytes(byte[] bytes) {
        ByteBuffer bb = ByteBuffer.wrap(bytes);
        return new UUID(bb.getLong(), bb.getLong());
    }
    
}

// 使用示例
UUID id = UuidService.generateUuidV7();
  • 数据库作为主键
CREATE TABLE users (
    id BINARY(16) PRIMARY KEY, -- 二进制存储 UUID
    name VARCHAR(50) NOT NULL,
    email VARCHAR(100)
);
  • 插入数据库和查询
// 插入数据
UUID userId = UuidUtils.generateUuidV7();
String sql = "INSERT INTO users (id, name) VALUES (?, ?)";

try (PreparedStatement ps = conn.prepareStatement(sql)) {
    ps.setBytes(1, UuidUtils.toBytes(userId)); 
    ps.setString(2, "John Doe");
    ps.executeUpdate();
}

// 查询数据
String query = "SELECT * FROM users WHERE id = ?";
try (PreparedStatement ps = conn.prepareStatement(query)) {
    ps.setBytes(1, UuidUtils.toBytes(userId));
    ResultSet rs = ps.executeQuery();
    while (rs.next()) {
        UUID id = UuidUtils.fromBytes(rs.getBytes("id"));
        String name = rs.getString("name");
    }
}

5. 关于UUIDv7 常见问题解答

5.1  UUIDv7到底会不会重复

极低概率,可视为唯一

UUIDv7由48位毫秒级Unix时间戳(约8.5万年后才会耗尽) + 74位随机数组成,总组合数达2^122(约5.3×10^36)。即使每秒生成10亿个UUID,重复概率也远低于10^-15,理论上可忽略。

极端场景,若系统时钟回拨且在同一毫秒内生成大量UUID(超过2^74个),可能冲突,但实际中几乎不可能发生。

5.2 什么是时钟回拨?对UUIDv7有何影响?

  • 原因:服务器时间因NTP同步错误、电源波动、虚拟机宿主机调整等意外回退。
  • 问题:时钟回拨后,新生成的UUIDv7时间戳可能小于前值,若回拨期间随机数碰撞则可能重复
  • 如何解决呢?

(1)预防措施

  • 使用冗余时钟源:如GPS+原子钟+NTP多层级同步,减少单点故障。
  • 监控时钟漂移:通过Kalman滤波等算法实时修正时间偏差。
  • 避免虚拟机时钟漂移:优先部署于物理机。

(2)生成时容错

  • 时间戳延续:检测到回拨时,延续最后记录的时间戳直至超过回拨区间。
  • 随机数扩容:回拨期间扩展随机数位数(如占用预留位),降低碰撞概率

本文地址:https://www.yitenyun.com/259.html

搜索文章

Tags

数据库 API FastAPI Calcite 电商系统 MySQL Web 应用 异步数据库 数据同步 ACK 双主架构 循环复制 TIME_WAIT 运维 负载均衡 JumpServer SSL 堡垒机 跳板机 HTTPS HexHub Docker 服务器 服务器性能 管理口 JumpServer安装 堡垒机安装 Linux安装JumpServer Deepseek 宝塔面板 Linux宝塔 生命周期 esxi esxi6 root密码不对 无法登录 web无法登录 SQL 查询 序列 核心机制 Windows Windows server net3.5 .NET 安装出错 HTTPS加密 Windows宝塔 Mysql重置密码 开源 PostgreSQL 存储引擎 锁机制 宝塔面板打不开 宝塔面板无法访问 查看硬件 Linux查看硬件 Linux查看CPU Linux查看内存 行业 趋势 Oracle 处理机制 无法访问宝塔面板 Undo Log 机制 监控 连接控制 InnoDB 数据库锁 Spring Redis 异步化 机器学习 优化 万能公式 动态查询 Serverless 无服务器 语言 ES 协同 响应模型 group by 索引 技术 分页查询 openHalo scp Linux的scp怎么用 scp上传 scp下载 scp命令 Postgres OTel Iceberg 缓存方案 缓存架构 缓存穿透 工具 高可用 存储 GreatSQL 连接数 数据 主库 SVM Embedding R edis 线程 日志文件 MIXED 3 Linux 安全 国产数据库 SQLite-Web SQLite 数据库管理工具 加密 场景 R2DBC Netstat Linux 服务器 端口 启动故障 ​Redis 推荐模型 Recursive 自定义序列化 防火墙 黑客 云原生 RocketMQ 长轮询 配置 SQLark 共享锁 向量数据库 大模型 OB 单机版 AI 助手 Hash 字段 PG DBA Rsync Ftp 信息化 智能运维 不宕机 磁盘架构 架构 电商 系统 数据分类 向量库 Milvus Canal Python 修改DNS Centos7如何修改DNS 业务 IT运维 流量 传统数据库 向量化 filelock 分库 分表 • 索引 • 数据库 线上 库存 预扣 语句 聚簇 非聚簇 MySQL 9.3 sftp 服务器 参数 PostGIS mini-redis INCR指令 MVCC 人工智能 推荐系统 redo log 重做日志 同城 双活 频繁 Codis MongoDB MCP 开放协议 Doris SeaTunnel 缓存 Redisson 锁芯 失效 高效统计 今天这篇文章就跟大家 工具链 主从复制 代理 数据类型 虚拟服务器 虚拟机 内存 事务 Java 开发 INSERT COMPACT prometheus Alert 数据备份 千万级 大表 窗口 函数 SSH 容器 数据结构 ZODB 发件箱模式 EasyExcel MySQL8 引擎 性能 分布式架构 分布式锁​ 聚簇索引 非聚簇索引 网络架构 网络配置 Web QPS 高并发 崖山 新版本 数据脱敏 加密算法 B+Tree ID 字段 RDB AOF 分页 核心架构 订阅机制 Go 数据库迁移 Web 接口 分布式 集中式 速度 服务器中毒 OAuth2 Token Redis 8.0 读写 自动重启 容器化 网络故障 播客 模型 数据页 数据集成工具 DBMS 管理系统 StarRocks 数据仓库 池化技术 连接池 微软 SQL Server AI功能 Redka SpringAI 排行榜 排序 JOIN Caffeine CP MGR 分布式集群 网络 部署 原子性 Entity 事务隔离 LRU 业务场景 Valkey Valkey8.0 Pottery Testcloud 云端自动化 数据字典 兼容性 dbt 数据转换工具 分页方案 排版 优化器 事务同步 1 ReadView 意向锁 记录锁 sqlmock 关系数据库 悲观锁 乐观锁 UUIDv7 主键 日志 Weaviate 单点故障 单线程 仪表盘 对象 Order AIOPS UUID ID InfluxDB 编程 Pump RAG HelixDB Ansible IT Crash 代码 双引擎 分布式锁 Zookeeper 产业链 恢复数据 字典 订单 LLM List 类型 线程安全 国产 用户 慢SQL优化 表空间 拦截器 动态代理 解锁 调优 Next-Key RR 互联网 GitHub Git 快照读 当前读 视图 神经系统 矢量存储 数据库类型 AI代理 查询规划 count(*) count(主键) 行数 算法 CAS 技巧 多线程 并发控制 恢复机制 闪回