• 糟糕,线上库存竟然变成负500......

糟糕,线上库存竟然变成负500......

2025-04-27 10:40:30 栏目:宝塔面板 35 阅读

前言

"快看我们的秒杀系统!库存显示-500了!"

3年前的这个电话让我记忆犹新。

当时某电商大促,我们自认为完美的分布式架构,在0点整瞬间被击穿。

数据库连接池耗尽,库存表出现负数,客服电话被打爆...

今天这篇文章跟大家一起聊聊商品超卖的问题,希望对你会有所帮助。

1.为什么会发生超卖?

首先我们一起看看为什么会发送超卖?

1.1 数据库的"最后防线"漏洞

我们用下面的列子,给大家介绍一下商品超卖是如何发生的。

public boolean buy(int goodsId) {
    // 1. 查询库存
    int stock = getStockFromDatabase(goodsId);
    if (stock > 0) {
        // 2. 扣减库存
        updateStock(goodsId, stock - 1);
        return true;
    }
    return false;
}

在并发场景下可能变成下图这样的:

图片

请求1和请求2都将库存更新成9。

根本原因:数据库的查询和更新操作,不是原子性校验,多个事务可能同时通过stock>0的条件检查。

1.2 超卖的本质

商品超卖的本质是:多个请求同时穿透缓存,同一时刻读取到相同库存值,最终在数据库层发生覆盖。

就像100个人同时看上一件衣服,都去试衣间前看了眼牌子,出来时都觉得自己应该拿到那件衣服。

2.防止超卖的方案

2.1 数据库乐观锁

数据库乐观锁的核心原理是通过版本号控制并发。

例如下面这样的:

UPDATE product 
SET stock = stock -1, version=version+1 
WHERE id=123 AND version=#{currentVersion};

Java的实现代码如下:

@Transactional
public boolean deductStock(Long productId) {
    Product product = productDao.selectForUpdate(productId);
    if (product.getStock() <= 0) return false;
    
    int affected = productDao.updateWithVersion(
        productId, 
        product.getVersion(),
        product.getStock()-1
    );
    return affected > 0;
}

基于数据库乐观锁方案的架构图如下:

图片

优缺点分析

优点

缺点

无需额外中间件

高并发时DB压力大

实现简单

可能出现大量更新失败

适用场景:日订单量1万以下的中小系统。

2.2 Redis原子操作

Redis原子操作的核心原理是使用:Redis + Lua脚本。

核心代码如下:

// Lua脚本保证原子性
String lua = "if redis.call('get', KEYS >= ARGV[1] then " +
             "return redis.call('decrby', KEYS[1], ARGV " +
             "else return -1 end";

public boolean preDeduct(String itemId, int count) {
    RedisScript script = new DefaultRedisScript<>(lua, Long.class);
    Long result = redisTemplate.execute(script, 
        Collections.singletonList(itemId), count);
    return result != null && result >= 0;
}

该方案的架构图如下:

图片

性能对比

  • 单节点QPS:数据库方案500 vs Redis方案8万
  • 响应时间:<1ms vs 50ms+

2.3 分布式锁

目前最常用的分布式锁的方案是Redisson。

下面是Redisson的实现:

RLock lock = redisson.getLock("stock_lock:"+productId);
try {
    if (lock.tryLock(1, 10, TimeUnit.SECONDS)) {
        // 执行库存操作
    }
} finally {
    lock.unlock();
}

注意事项

1.锁粒度要细化到商品级别

2.必须设置等待时间和自动释放

3.配合异步队列使用效果更佳

该方案的架构图如下:

图片

2.4 消息队列削峰

可以使用 RocketMQ的事务消息。

核心代码如下:

// RocketMQ事务消息示例
TransactionMQProducer producer = new TransactionMQProducer("stock_group");
producer.setExecutor(new TransactionListener() {
    @Override
    public LocalTransactionState executeLocalTransaction(Message msg) {
        // 扣减数据库库存
        return LocalTransactionState.COMMIT_MESSAGE;
    }
});

该方案的架构图如下:

图片

技术指标

  • 削峰能力:10万QPS → 2万TPS
  • 订单处理延迟:<1秒(正常时段)

2.5 预扣库存

预扣库存是防止商品超卖的终极方案。

核心算法如下:

// Guava RateLimiter限流
RateLimiter limiter = RateLimiter.create(1000); // 每秒1000个令牌

public boolean preDeduct(Long itemId) {
    if (!limiter.tryAcquire()) return false;
    
    // 写入预扣库存表
    preStockDao.insert(itemId, userId);
    return true;
}

该方案的架构图如下:

图片

性能数据

  • 百万级并发支撑能力
  • 库存准确率99.999%
  • 订单处理耗时200ms内

3.避坑指南

3.1 缓存与数据库不一致

某次大促因缓存未及时失效,导致超卖1.2万单。

错误示例如下:

// 错误示例:先删缓存再写库
redisTemplate.delete("stock:"+productId);
productDao.updateStock(productId, newStock); // 存在并发写入窗口

3.2 未考虑库存回滚

秒杀取消后,忘记恢复库存,引发后续超卖。

正确做法是使用事务补偿。

例如下面这样的:

@Transactional
public void cancelOrder(Order order) {
    stockDao.restock(order.getItemId(), order.getCount());
    orderDao.delete(order.getId());
}

库存回滚和订单删除,在同一个事务中。

3.3 锁粒度过大

锁粒度过大,全局限流导致10%的请求被误杀。

错误示例如下:

// 错误示例:全局限锁
RLock globalLock = redisson.getLock("global_stock_lock");

总结

其实在很多大厂中,一般会将防止商品超卖的多种方案组合使用。

架构图如下:

图片

通过组合使用:

  1. Redis做第一道防线(承受80%流量)
  2. 分布式锁控制核心业务逻辑
  3. 预扣库存+消息队列保证最终一致性

实战经验:某电商在2023年双11中:

  • Redis集群承载98%请求
  • 分布式锁拦截异常流量
  • 预扣库存保证最终准确性

系统平稳支撑了每秒12万次秒杀请求,0超卖事故发生!

记住:没有银弹方案,只有适合场景的组合拳!


本文地址:https://www.yitenyun.com/125.html

搜索文章

Tags

数据库 API FastAPI Calcite 电商系统 MySQL 数据同步 ACK 双主架构 循环复制 Web 应用 异步数据库 序列 核心机制 生命周期 Deepseek 宝塔面板 Linux宝塔 Docker JumpServer JumpServer安装 堡垒机安装 Linux安装JumpServer esxi esxi6 root密码不对 无法登录 web无法登录 Windows Windows server net3.5 .NET 安装出错 宝塔面板打不开 宝塔面板无法访问 SSL 堡垒机 跳板机 HTTPS Windows宝塔 Mysql重置密码 无法访问宝塔面板 HTTPS加密 查看硬件 Linux查看硬件 Linux查看CPU Linux查看内存 ES 协同 修改DNS Centos7如何修改DNS scp Linux的scp怎么用 scp上传 scp下载 scp命令 防火墙 服务器 黑客 Serverless 无服务器 语言 存储 Spring SQL 动态查询 Oracle 处理机制 Linux 安全 网络架构 工具 网络配置 加密 场景 MySQL 9.3 开源 PostgreSQL 存储引擎 Canal RocketMQ 长轮询 配置 HexHub Rsync 架构 InnoDB 缓存方案 缓存架构 缓存穿透 信息化 智能运维 日志文件 MIXED 3 响应模型 线上 库存 预扣 聚簇 非聚簇 索引 B+Tree ID 字段 数据 业务 AI 助手 数据库锁 监控 单点故障 GreatSQL Hash 字段 分库 分表 优化 万能公式 云原生 DBMS 管理系统 SpringAI Redis 自定义序列化 Redis 8.0 openHalo OB 单机版 ​Redis 机器学习 推荐模型 SVM Embedding PostGIS 系统 SQLark 虚拟服务器 虚拟机 内存 数据集成工具 SQLite Redka 自动重启 运维 sqlmock sftp 服务器 参数 分页查询 Netstat Linux 服务器 端口 排行榜 排序 SQLite-Web 数据库管理工具 同城 双活 缓存 聚簇索引 非聚簇索引 共享锁 • 索引 • 数据库 RDB AOF 技术 Testcloud 云端自动化 查询 EasyExcel MySQL8 prometheus Alert 向量数据库 大模型 不宕机 IT 数据备份 容器化 Postgres OTel Iceberg 分布式架构 分布式锁​ 数据类型 OAuth2 Token Entity 开发 StarRocks 数据仓库 Doris SeaTunnel AIOPS MongoDB 容器 IT运维 人工智能 推荐系统 分页 数据结构 连接控制 机制 Caffeine CP Python Web 部署 LRU Milvus 悲观锁 乐观锁 池化技术 连接池 崖山 新版本 高可用 向量库 Ftp redo log 重做日志 MVCC 事务隔离 磁盘架构 流量 MCP mini-redis INCR指令 单线程 线程 速度 服务器中毒 开放协议 Web 接口 字典 电商 QPS 高并发 数据脱敏 加密算法 R2DBC 双引擎 RAG HelixDB 原子性 对象 微软 SQL Server AI功能 窗口 函数 主库 Order 网络 频繁 Codis Crash 代码 ZODB SSH 引擎 性能 List 类型 dbt 数据转换工具 1 PG DBA 工具链 Pottery 优化器 InfluxDB 模型 传统数据库 向量化 发件箱模式 意向锁 记录锁 网络故障 事务同步 UUIDv7 主键 仪表盘 Redisson 锁芯 LLM 线程安全 INSERT COMPACT Undo Log 连接数 订单 JOIN